
Knowl Inf Syst
DOI 10.1007/s10115-007-0110-6

REGULAR PAPER

Self-supervised relation extraction from the Web

Benjamin Rozenfeld · Ronen Feldman

Received: 17 January 2007 / Revised: 5 July 2007 / Accepted: 8 September 2007
© Springer-Verlag London Limited 2007

Abstract Web extraction systems attempt to use the immense amount of unlabeled text in
the Web in order to create large lists of entities and relations. Unlike traditional Information
Extraction methods, the Web extraction systems do not label every mention of the target
entity or relation, instead focusing on extracting as many different instances as possible while
keeping the precision of the resulting list reasonably high. SRES is a self-supervised Web
relation extraction system that learns powerful extraction patterns from unlabeled text, using
short descriptions of the target relations and their attributes. SRES automatically generates
the training data needed for its pattern-learning component. The performance of SRES is
further enhanced by classifying its output instances using the properties of the instances and
the patterns. The features we use for classification and the trained classification model are
independent from the target relation, which we demonstrate in a series of experiments. We
also compare the performance of SRES to the performance of the state-of-the-art KnowItAll
system, and to the performance of its pattern learning component, which learns simpler
pattern language than SRES.

Keywords Web extraction · Text mining · Pattern learning · Unsupervised learning ·
Relationship extraction

1 Introduction

Information Extraction (IE) [5,8–10,12,13,15,16,19,21,22] is the task of extracting factual
assertions from text. Most IE systems rely on knowledge engineering or on machine learning
to generate extraction patterns—the mechanism that extracts entities and relation instances
from text. In the machine learning approach, a domain expert labels instances of the target

B. Rozenfeld · R. Feldman (B)
Information Systems, HU School of Business Administration, Hebrew University, Jerusalem, Israel
e-mail: Ronen.Feldman@huji.ac.il

B. Rozenfeld
e-mail: grurgrur@gmail.com

123

B. Rozenfeld, R. Feldman

relations in a set of documents. The system then learns extraction patterns, which can be
applied to new documents automatically.

Both approaches require substantial human effort, particularly when applied to the broad
range of documents, entities, and relations on the Web. In order to minimize the manual effort
necessary to build Web IE systems, we have designed and implemented Self-Supervised
Relation Extraction System (SRES). SRES takes as input the names of the target relations
and the types of their arguments. It then uses a large set of unlabeled documents downloaded
from the Web in order to learn the extraction patterns.

SRES is most closely related to the KnowItAll system developed at University of
Washington by Oren Etzioni and colleagues [7], because both are self-supervised and both
leverage relation-independent extraction patterns to automatically generate seeds, which are
then fed into a pattern-learning component. KnowItAll is based on the observation that the
Web corpus is highly redundant. Thus, its selective, high-precision extraction patterns rea-
dily ignore most sentences, and focus on the sentences that indicate the presence of relation
instances with high probability.

In contrast, SRES is based on the observation that, for many relations, the Web corpus
has limited redundancy, particularly when one is concerned with less prominent instances of
these relations. Consequently, SRES utilizes a more expressive extraction pattern language,
which enables it to extract information from a broader set of sentences. SRES relies on
a sophisticated mechanism to assess its confidence in each extraction, enabling it to sort
extracted instances, thereby improving its recall without sacrificing precision.

Our main contributions are as follows:

• We introduce a novel domain-independent system to extract relation instances from the
Web with both high precision and relatively high recall.

• We show how to minimize the human effort necessary to deploy SRES for an arbitrary
set of relations, including automatically generating and labeling positive and negative
examples of the relation.

• We show how we can integrate a simple Named-Entity Recognition (NER) component
into the classification scheme of SRES in order to boost recall between 5 and 15% for
similar precision levels.

• We provide an estimation of the true recall of SRES for unbounded relations such as
merger and acquisition.

• We report on an experimental comparison between SRES, SRES-NER and the state-
of-the-art KnowItAll system, and show that SRES can double or even triple the recall
achieved by KnowItAll for relatively rare relation instances.

The rest of the paper is organized as follows: Sect. 2 describes previous work. Section 3
outlines the general design principles of SRES, its architecture, and then describes each
SRES component in detail. Section 4 describes our extraction classification schema and
Sect. 5 presents our experimental evaluation. Section 6 contains conclusions and directions
for future work.

2 Related work

The IE systems most similar to SRES are based on bootstrap learning: Mutual Bootstrapping
[20], the DIPRE system [2], and the Snowball system [1]. Ravichandran and Hovy [18] also
use bootstrapping and learn simple surface patterns for extracting binary relations from the
Web.

123

Self-supervised relation extraction from the Web

Unlike those unsupervised IE systems, SRES surface patterns allow gaps that can be
matched by any sequences of tokens. This makes SRES patterns more general, and allows
to recognize relation instances in sentences inaccessible to the simpler surface patterns of
systems such as in [2,18,20]. On the other hand, we cannot use even more sophisticated
patterns that include complex constraints utilized by fully supervised systems such as in
[4,21], because this would lead to severe overfitting problems as all our positive and negative
examples are generated automatically.

Another direction for unsupervised relation learning was taken in [3,14]. These systems
use an NER system to identify frequently co-occuring pairs of entities and then cluster them
based on the types of the entities and the words appearing between the entities. The main
benefit of this approach is that all relations between the two entity types can be discovered
simultaneously, and there is no need for the user to supply the relations, definitions. Such
systems can be used as a preliminary step to SRES if their accuracy reaches sufficiently high
level.

We compared our results directly to two other self-supervised extraction systems, the
Snowball [1] and KnowItAll. Snowball is an unsupervised system for learning relations from
document collections. The system takes as input a set of seed examples for each relation,
and uses a clustering technique to learn patterns from the seed examples. It does rely on a
full-fledged Named Entity Recognition system. Snowball achieved fairly low precision on
relations such as Merger and Acquisition on the same dataset we used in our experiments.
Since we are primarily interested in high-precision results, we did not do further comparisons
with SnowBall.

KnowItAll is a system developed at University of Washington by Oren Etzioni and col-
leagues [7]. We shall now briefly describe it and its pattern learning component.

2.1 Brief description of KnowItAll

KnowItAll uses a set of generic extraction patterns and automatically instantiates rules by
combining those patterns with user supplied relation labels. For example, KnowItAll has
patterns for the generic “of” relation:

NP1 <relation> NP2
NP1’s <relation>, NP2
NP2, <relation> of NP1

where NP1 and NP2 are simple noun phrases that extract values of attribute1 and attribute 2
of a relation, and <relation> is a user-supplied string associated with the relation. The rules
may also constrain NP1 and NP2 to be proper nouns. Similar generic patterns are given for
“direct-object” relations (such as acquisition) or symmetric relations (such as merger).

The rules have alternating context strings (exact string match) and extraction slots (typi-
cally an NP or head of an NP). Each rule has an associated query used to automatically find
candidate sentences from a Web search engine.

KnowItAll also includes mechanisms to control the quantum of search, to merge redundant
extractions, and to assign a probability to each extraction based on frequency of extraction
or on Web statistics [6].

KnowItAll-PL. While those generic rules lead to high precision extraction, they tend to
have low recall, due to the wide variety of contexts describing a relation. KnowItAll includes
a simple pattern learning scheme (KnowItAll-PL) that builds on the generic extraction
mechanism (KnowItAll-baseline). Like SRES, this is a self-supervised method that boots-
traps from seeds that are automatically extracted by the baseline system.

123

B. Rozenfeld, R. Feldman

KnowItAll-PL creates a set of positive training sentences by downloading sentences that
contain both argument values of a seed tuple and the relation label. Negative training is
created by downloading sentences with only one of the seed argument values, and considering
a nearby NP as the other argument value. This does not guarantee that the negative example
will actually be false, but works well in practice.

Rule induction tabulates the occurrence of context tokens surrounding the argument values
of the positive training sentences. Each candidate extraction pattern has a left context of zero
to k tokens immediately to the left of the first argument, a middle context of all tokens between
the two arguments, and a right context of zero to k tokens immediately to the right of the
second argument. A pattern can be generalized by dropping the furthest terms from the left or
right context. KnowItAll-PL retains the most general version of each pattern that has training
frequency over a threshold and training precision over a threshold.

3 Description of SRES

The goal of SRES is extracting instances of relations from the Web without human supervi-
sion. Accordingly, the input of the system is limited to (reasonably short) definition of the
target relations (composed of the relation’s schema and a few keywords that enable gathering
relevant sentences). For example, this is the description of the acquisition relation:

Acquisi tion(Proper N P, Proper N P)ordered

keywords = {"acquired" "acquisi tion"}
The word ordered indicates that Acquisition is not a symmetric relation and the order of its
arguments matters. The ProperNP tokens indicate the types of the attributes. In the regular
mode, there are only two possible attribute types—it ProperNP and CommonNP, meaning
proper and common noun phrases, respectively. When using the NER Filter component
described in the Sect. 4.1 we allow further subtypes of ProperNP, and the predicate definition
becomes:

acquisi tion(Company, Company) . . .

The keywords are used in three ways: for gathering sentences from the Web, for instantiating
the generic patterns for seeds generation, and for filtering out irrelevant patterns. For the third
of these tasks we also utilize additional keywords (such as “acquire”, “purchased”, “hostile
takeover”, etc.), which are added automatically using WordNet [17].

SRES consists of several largely independent components; their layout is shown on the
Fig. 1. The Sentence Gatherer generates (e.g., downloads from the Web) a large set of sen-
tences that may contain target instances. The Seeds Generator, which is essentially equal
to the KnowItAll-baseline system, uses a small set of generic patterns instantiated with the
predicate keywords to extract a small set of high-confidence instances of the target relations.
The Pattern Learner uses the seeds to learn likely patterns of relation occurrences. Then,
the Instance Extractor uses the patterns to extracts the instances from the sentences. Those
instances can be filtered by an NER Filter, which is an optional part of the system. Finally,
the Classifier assigns the confidence score to each extraction.

3.1 Pattern learner

The task of the Pattern Learner is to learn the patterns of occurrence of relation instances.
This is an inherently supervised task, because at least some occurrences must be known

123

Self-supervised relation extraction from the Web

Sentence
Gatherer

Input:
Target Relations

Definitions

Web
Sentences

keywords

Pattern
Learner

Instance
Extractor

Output:
Extractions

Seeds
Generator

seeds

patterns

NER Filter
(optional)

instances
Classifier

Fig. 1 The architecture of SRES

in order to be able to find patterns among them. Consequently, the input to the Pattern
Learner includes a small set (10 instances in our experiments) of known instances for each
target relation. These seeds are generated automatically by the generic patterns (described in
Sect. 2.1) instantiated with the relation name and keywords. Those patterns have a relatively
high precision (although low recall), and the top-scoring results, which are the ones extracted
the highest number of times from different sentences, have close to 100% probability of being
correct.

The Pattern Learner proceeds as follows: first, the gathered sentences that contain the seed
instances are used to generate the positive and negative sets. From these sets the patterns are
learned. Finally, the patterns are post-processed and filtered. We shall now describe the steps
in detail.

3.1.1 Preparing the positive and negative sets

The positive set of a predicate (the terms predicate and relation are interchangeable in our
work) consists of sentences that contain a known instance of the predicate, with the instance
attributes changed to “<Attr N>”, where N is the attribute index. For example, assuming
there is a seed instance Acquisition(Oracle, PeopleSoft), the sentence

The Antitrust Division of the U.S. Department of Justice evaluated the likely competitive
effects of Oracle’s proposed acquisition of PeopleSoft.
will be changed to

T he Anti trust Division of <Attr1>′s proposed acquisi tion of <Attr2>.

The positive set of a predicate P is generated straightforwardly, using substring search. The
negative set of a predicate consists of sentences with known false instances of the predicate
similarly marked (with <Attr N> substituted for attributes). We generate the negative set
from the sentences in the positive set by changing the assignment of one or both attributes
to other suitable entities in the sentence. In the shallow-parser-based mode of operation,
any suitable noun phrase can be assigned to an attribute. Continuing the example above, the

123

B. Rozenfeld, R. Feldman

following sentences will be included in the negative set:

<Attr1> of the <Attr2> evaluated the likely . . .

<Attr2> of the U.S. acquisi tion of <Attr1>

etc.

In addition, the definition of each predicate indicates whether the predicate is symmetric (like
Merger) or antisymmetric (like Acquisition). In the former case, the sentences produced by
exchanging the attributes in positive sentences are placed into the positive set, and in the
latter case into the negative set of the predicate.
The following pseudocode shows the process of generating the positive and negative sets:

Let S be the set of gathered sentences.
For each predicate P
For each s ∈ S
For each known seed P(A1, A2) of the predicate P
If A1 and A2 are each found exactly once inside s
For all entities e1, e2 ∈ s, such that e2 �= e1, and

T ype(e1) = type of the first attribute of P , and
T ype(e2) = type of the second attribute of P

Let s′ := s with eN changed to “<Attr N>”.
If e1 = A1 and e2 = A2

Add s′ to the PositiveSet(P).
Else If e1 = A2 and e2 = A1 and Symmetric(P)
Add s′ to the PositiveSet(P).
Else
Add s′ to the NegativeSet(P).
The type of an entity—Type(e)—is either “CommonNP” or “ProperNP”.
Some of the automatically generated positive or negative sentence may be errors. A positive

sentence may be a chance occurrence of the attributes of a true instance in the same sentence,
whereas a negative sentence may be generated from a sentence that contained more than one
instance of the target predicate, in which case the sentence should not be labeled as negative.
However, the number of such mistakes is sufficiently small, and the automatically generated
positive and negative sets can be successfully used for pattern learning, as our evaluation
demonstrates.

3.1.2 Generating the patterns

The patterns for the predicate P are generalizations of pairs of sentences from the positive
set of P . The function Generalize(s1, s2) is applied to each pair of sentences s1 and s2 from
the positive set of the predicate. The function generates a pattern that is the best (according
to the objective function defined below) generalization of its two arguments.

The following pseudocode shows the process of generating the patterns for the predicate P:

For each pair s1, s2 f rom PositiveSet (P)

Let Pattern = Generali ze(s1, s2).

Add Pattern to PatternsSet (P).

The patterns are sequences of tokens, skips (denoted *), limited skips (denoted *?) and slots.
The tokens can match only themselves, the skips match zero or more arbitrary tokens, and

123

Self-supervised relation extraction from the Web

slots match instance attributes. The limited skips match zero or more arbitrary tokens, which
must not belong to extractable entities—the entities of the types equal to the types of the
predicate attributes. In the shallow parser-based mode, there are only two possible extractable
entity types—it ProperNP and CommonNP.

The Generalize(s1, s2) function takes two sentences and generates the least (most specific)
common generalization of both. The function does a dynamical programming search for the
best match between the two patterns (Optimal String Alignment algorithm), with the cost of
the match defined as the sum of costs of matches for all elements. The exact costs of matching
elements are not significant. We use the following numbers: two identical elements match at
cost 1, and a token matches an empty space at cost 10. All other combinations have infinite
cost. After the best match is found, it is converted into a pattern by copying matched identical
elements and adding skips where non-identical elements are matched. For example, assume
the sentences are

T oward this end, <Attr1> in July acquired <Attr2>

Earlier this year, <Attr1> acquired <Attr2> f rom X

After the dynamic programming-based search, the following match will be found: at total

Toward (cost 10)
Earlier (cost 10)

this this (cost 1)
end (cost 10)

Year (cost 10)
, , (cost 1)
<Attr 1> <Attr 1> (cost 1)
in July (cost 20)
acquired acquired (cost 1)
<Attr2> <Attr2> (cost 1)

from (cost 10)
X (cost 10)

cost = 85. Assuming that “X” is an extractable entity, whereas the other tokens are not entities,
the match will be converted to the pattern

∗? this ∗?, <Attr1> ∗? acquired <Attr2> ∗

Note, that the generalization algorithm allows patterns with any kind of elements beside skips,
such as CapitalWord, Number, CapitalizedSequence, etc. As long as the costs and results of
matches are properly defined, the Generalize function is able to find the best generalization of
any two patterns. However, in the present work we stick with the simplest pattern definition
as described above.

3.1.3 Post-processing, filtering, and scoring

The number of patterns generated at the previous step is very large. Post-processing and
filtering tries to reduce this number, keeping the most useful patterns and removing the too
specific, too general, and irrelevant ones.

First, we remove from patterns all “stop words” surrounded by skips from both sides, such
as the word “this” in the last pattern in the previous subsection. Such words do not add to the
discriminative power of patterns, and only needlessly reduce the pattern recall. The list of

123

B. Rozenfeld, R. Feldman

stop words includes all functional and very common English words, as well as punctuation
marks. Note, that the stop words are removed only if they are surrounded by skips, because
when they are adjacent to slots or non-stop words they often convey valuable information.
In particular, because of this we cannot remove stopwords prior to generalization. After this
step, the pattern above becomes

∗?, <Attr1> ∗? acquired <Attr2>∗

In the next step of filtering, we remove all patterns that do not contain relevant words. For each
predicate, the list of relevant words is automatically generated from WordNet by following
all links to depth at most 2, starting from the predicate keywords. (All words at depth 1 are
insufficient, whereas the set of words of depth 3 is too broad.) For example, the pattern

<Attr1> ∗ by <Attr2>

will be removed, while the pattern

<Attr1> ∗ purchased <Attr2>

will be kept, because the word “purchased” can be reached from the keyword “acquisition”
via synonym and derivation links.

The filtered patterns are then scored by their performance on the positive and negative sets.
The scoring formula reflects the following heuristic: it needs to rise monotonically with the
number of positive sentences it matches, but drops fast with the number of negative sentences
it matches. Thus, the score of a pattern in our system is the number of positive sentences it
matches, divided by the square of the number of negative sentences it matches plus 1:

Score(Pattern) = |{S ∈ PositiveSet : Pattern matches S}|
(|{S ∈ PositiveSet : Pattern matches S}| + 1)2

We tested several other formulas that respected the heuristic above, and chose the best-
performing, although the difference in performance is small.

When the scores are known, a threshold is applied to the set of patterns, and all patterns
scoring less than the threshold (currently, it is set to 6) are discarded. Finally, if the number
of patterns is still too large, the system keeps the 300 top-scoring patterns and discards the
rest.

3.1.4 Scalability issues

During pattern creation, the pattern learner calls the Generalize() function once for each
pair of positive sentences. The complexity of the Generalize function, which is based on
dynamical programming, is quadratic in the sentence length. Thus, the complexity of pattern
creation is O(K 2 L2), where K is the number of sentences in the PositiveSet, and L is the
maximal length of sentence measured in tokens. For Web-scale collections, the positive sets
of predicates may grow very large. However, useful patterns can be created from any subset
of such large positive set, because useful patterns must be sufficiently general to match many
positive sentences. In our experiments we picked a random subset of 1,000 positive sentences
for each of the predicates. Increasing this number to 2,000 did not significantly change the
final results.

The other components of the system are linear in the data size and thus do not present
scalability problems.

123

Self-supervised relation extraction from the Web

3.2 Instance extractor

The Instance Extractor applies the patterns generated by the Pattern Learner to a large body of
sentences. In order to be able to match the slots of the patterns, the Instance Extractor utilizes
an external shallow parser from the OpenNLP package (http://opennlp.sourceforge.net/),
which is able to find all proper and common noun phrases in sentences. Those phrases can
subsequently be matched to the slots of the patterns. In other respects, the pattern matching
and extraction process is straightforward.

3.3 Classifying the extractions

The goal of the final classification stage is to filter the list of all extracted instances, keeping
the correct extractions and removing mistakes that would always occur regardless of the
quality of the patterns. It is of course impossible to know which extractions are correct, but
there exist properties of patterns and pattern matches that increase or decrease the confidence
in the extractions that they produce. Thus, instead of a binary classifier, we seek a real-valued
confidence function c, mapping the set of extracted instances into the [0,1] segment.

Since confidence value depends on the properties of particular sentences and patterns, it
is more properly defined over the set of single pattern matches. Then, the overall confidence
of an instance is the maximum of the confidence values of the matches that produce the
instance.

Assume that an instance E was extracted from a match of a pattern P at a sentence S. The
following properties may influence the confidence c(E, P, S):

– The total number of different sentences, from which the instance E was extracted. Ins-
tances extracted from several sentences have much higher confidence.

– Statistics on the pattern P gathered during pattern learning—the number of matched
positive and negative sentences.

– Information on whether the slots of the pattern P are adjacent to non-skips. The patterns
with such “anchored” slots usually have better precision.

– The total number of non-stop-word tokens that the pattern P contains. The patterns with
greater number are more specific and usually more precise.

– Information on whether the sentence S contains entities of the relation attribute’s type,
between the slots of the match, and outside the match.

– The number of words in the sentence S that were matched to the skips in P that appear
between the slots of P . If this number is big, the pattern is less binding, and the confidence
is lower.

During the experiments, it turned out that the pattern statistics and the skipped entity infor-
mation did not lead to any improvement. Other properties were useful, and were turned into
the following set of binary features:

f1(E, P, S) = 1, if the number of sentences producing E is ≥ 0.
f2(E, P, S) = 1, if the number of sentences producing E is ≥ 2.
f3(E, P, S) = 1, if at least one slot of the pattern P is adjacent to a non-stop-word token.
f4(E, P, S) = 1, if both slots of the pattern P are adjacent to non-stop-word tokens.
f5(E, P, S) = 1, if the number of non-stop words in P is 0 (f5), 1 or greater (f6), 2 or

greater (f7), 3 or greater (f8), and 4 or greater (f9).
f10 . . . f15(E, P, S) = 1, if the number of words between the slots of the match M that

were matched to skips of the pattern P is 0 (f10),≤1(f11),≤2(f12),≤3(f13),≤5(f14), and
≤10(f15).

123

http://opennlp.sourceforge.net/

B. Rozenfeld, R. Feldman

As can be seen, the set of features above is small, and is not specific to any particular
predicate. This allows us to train a model using a small amount of labeled data for one
predicate, and then use the model for all other predicates:

Training: The patterns for a single model predicate are run over a relatively small set
of sentences (3,000–10,000 sentences in our experiments), producing a set of extractions
(between 150–300 extractions in our experiments).

The extractions are manually labeled according to whether they are correct or not.
For each pattern match Mk = (Ek, Pk, Sk), the value of the feature vector f k = (f1(Mk),

. . . , f15(Mk)) is calculated, and the label Lk ∈ {1, 0} is set according to whether the extraction
Ek is correct or not.

A regression model estimating the function L(f) is built from the training data {(f k, Lk)}.
For our classifier we used the BBR [11], but other models, such as SVM or NaiveBayes are
of course also possible.

Confidence estimation: For each pattern match M , its score L(f (M)) is calculated by the
trained regression model. Note that we do not threshold the value of L , instead using the raw
probability value between zero and one.

The final confidence estimates c(E) for the extraction E is set to the maximum of L(f (M))

over all matches M that produced E .

3.4 NER filter

In the SRES–NER version the entities of each candidate instance are passed through a simple
rule-based NER filter, which attaches a score (“yes”, “maybe”, or “no”) to the argument(s)
and optionally fixes the arguments boundaries. The filter is capable of identifying entities of
type PERSON and COMPANY. The scores mean:

“yes”—the argument is of the correct entity type.
“no”—the argument is not of the right entity type, and hence the candidate instance should

be removed.
“maybe”—the argument type is uncertain, can be either correct or no.
If “no” is returned for one of the arguments, the instance is removed. Otherwise, an

additional binary feature is added to the instance’s vector:
f16 = 1 iff the score for both arguments is “yes”.
For bound predicates, only the second argument is analyzed, naturally.
The NER filter is implemented as a Perl script that checks whether a character string

conforms to a set of simple regular expression patterns, and whether it appears inside lists
of known entities. The patterns represent simple regularities in the internal structure of the
entity types. For example, the patterns for PERSON include:

Person = KnownFirstName [Initial] LastName
Person = Honorific [FirstName] [Initial] LastName
Honorific = (“Mr” | “Ms” | “Dr” | . . .) [“.”]
Initial = CapitalLetter [“.”]
KnownFirstName = member of KnownPersonalNamesList
FirstName = CapitalizedWord
LastName = CapitalizedWord
LastName = CapitalizedWord [“–”CapitalizedWord]
LastName = (“o” | “de” | . . .) “‘”CapitalizedWord

while the patterns for COMPANY include:

123

Self-supervised relation extraction from the Web

Company = KnownCompanyName
Company = CompanyName CompanyDesignator
Company = CompanyName FrequentCompanySfx
KnownCompanyName = member of KnownCompaniesList
CompanyName = CapitalizedWord +
CompanyDesignator = “inc” | “corp” | “co” | . . .
FrequentCompanySfx = “systems” | “software” | . . .
. . .

The filter works in the following way: it receives a sentence with a labeled candidate entity
of a specified entity type (which in the current version can be either Person or Company).
It then applies all of the regular expression patterns to the labeled text and to its enclosing
context. If a boundary is incorrectly placed according to the patterns, it is fixed. Then, the
following result is returned:

“yes”, if some pattern of the right entity type matched the candidate entity, while there
were no matches for patterns of other entity types.

“no”, if no pattern of the right entity type matched the candidate entity, while there was
at least one match of a patterns of other entity types.

“maybe”, otherwise, that is either if there were no matches at all, or if both correct and
incorrect entity types matched.

4 Experimental evaluation

Our experiments aim to answer three questions:

1. Can we train SRES’s classifier once, and then use the results on all other relations?
2. How does SRES’s performance compare with other systems (KnowItAll and KnowItAll-

PL)? What boost will we get by introducing a simple NER into the classification scheme
of SRES?

3. What is the true recall of SRES?

The experiments utilized five relations:

Acquisi tion(BuyerCompany, AcquiredCompany),

Merger(Company1, Company2),

C E O_O f (Company, Person),

Mayor O f (City, Person),

I nventor O f (Person, I nvention).

Merger is a symmetric predicate, in the sense that the order of its attributes does not matter.
Acquisition is antisymmetric, and the other three are tested as bound in the first attribute.
For the bound predicates, we are only interested in the instances with particular prespecified
values of the first attribute. The Invention attribute of the InventorOf predicate is of type
CommonNP. All other attributes are of type ProperNP.

The data for the experiments were collected by the KnowItAll crawler. The data for the
Acquisition and Merger predicates consist of about 900,000 sentences for each of the two
predicates, where each sentence contains at least one predicate keyword. The data for the
bounded predicates consist of sentences that contain a predicate keyword and one of a hundred
values of the first (bound) attribute. Half of the hundred are frequent entities (>100,000 search
engine hits), and another half are rare (<10,000 hits).

123

B. Rozenfeld, R. Feldman

Fig. 2 Cross-predicate
classification performance
results. Each graph shows the five
precision-recall curves produced
by using the five different model
predicates. As can be seen, the
curves on each graph are very
similar

Acquisition

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150

noisicer
P

CEO_Of

0 50 100 150 200 250

Extractions count

Merger

0 50 100 150 200 250

Acq.

CEO

Inventor

Mayor

Merger

The pattern learning for each of the predicates was performed using the whole corpus of
sentences for the predicate. For testing the precision of each of the predicates in each of the
systems we manually evaluated sets of 200 instances that were randomly selected out of the
full set of instances extracted from the whole corpus. The manual evaluation was done based
on a set of strict evaluation rules that were developed as joint work of the teams of KnowItAll
and SRES. Based on these rules all of the dubious instances were considered “mistakes”.
For instance, instances that had any of the following problems were considered mistakes:
extra/missing words in entities, mergers/acquisitions of non-companies (such as schools or
political parties), locations included in company names, etc.

In the first experiment, we test the performance of the classification component using
different predicates for building the model. In the second experiment we evaluate the full
system over the whole dataset.

4.1 Cross-predicate classification performance

In this experiment we test whether the choice of the model predicate for training the classifier
is significant.

The pattern learning for each of the predicates was performed using the whole corpus of
sentences for the predicate. For testing we used a small random selection of sentences, run
the Instance Extractor over them, and manually evaluated each extracted instance. The results
of the evaluation for Acquisition, CEO_Of, and Merger are summarized in Fig. 2. As can be
seen, using any of the predicates as the model produces similar results. The graphs for the
other two predicates are similar. We have used only the first 15 features, as the NER-based
feature (f16) is predicate-dependent.

4.2 Performance of the whole system

In this experiment we compare the performance of SRES with classification to the perfor-
mance of KnowItAll. To carry out the experiments, we used extraction data kindly provided

123

Self-supervised relation extraction from the Web

CeoOf

0.60

0.70

0.80

0.90

1.00

0

Correct Extractions

P
re

ci
si

o
n

KIA KIA-PL SRES S_NER

InventorOf

0.60

0.70

0.80

0.90

1.00

0

Correct Extractions
KIA KIA-PL SRES

MayorOf

0.60

0.70

0.80

0.90

1.00

0

Correct Extractions
KIA KIA-PL SRES S_NER

Acquisition

0.50

0.60

0.70

0.80

0.90

1.00

0

Correct Extractions
KIA KIA-PL SRES S_NER

Merger

0.50

0.60

0.70

0.80

0.90

1.00

0

Correct Extractions
KIA KIA-PL SRES S_NER

50 100 150 200 250 300 500 1,000 1,500 2,000

200 400 600 800 1,000 1,200

5,000 10,000 15,000 20,000 2,000 4,000 6,000 8,000 10,000

P
re

ci
si

o
n

P
re

ci
si

o
n

P
re

ci
si

o
n

P
re

ci
si

o
n

Fig. 3 Comparison between SRES, KnowItAll-baseline, and KnowItAll-PL

by the KnowItAll group. They provided us with the extractions obtained by the KnowItAll
system and by its pattern learning component (KnowItAll-PL). Both are sketched in Sect. 2.1
and are described in detail in [7].

In this experiment we used Acquisition as the model predicate for testing all other pre-
dicates except itself. For testing Acquisition we used CEO_Of as the model predicate. The
results are summarized in the five graphs in the Fig. 3.

For three relations (Acquisition, Merger, and InventorOf) SRES clearly outperforms Kno-
wItAll. Yet for the other two (CEO_Of and MayorOf), the simpler method of KnowItAll-PL
or even the KnowItAll-baseline does as well as SRES. Close inspection reveals that the key
difference is the amount of redundancy of instances of those relations in the data. Instances
of CEO_Of and MayorOf are mentioned frequently in a wide variety of sentences, whereas
instances of the other relations are relatively infrequent.

123

B. Rozenfeld, R. Feldman

Datasets redundancy

0

10

20

30

40

50

60

70

Acq

ec
na ts

ni
re

p
sec

net
ne s

e
ga rev

A

Merger Inventor CEO Mayor

Fig. 4 Data Sets Redundancy

The graph in Fig. 4 shows the difference in the amount of redundancy between the relations,
in terms of the average number of sentences that mention each instance of a particular relation.
While the numbers are only crude estimates, calculated by counting the sentences that contain
both instance attributes, they still clearly demonstrate the qualitative difference between the
two sets of relations.

KnowItAll extraction works well when redundancy is high, and most instances have a
good chance of appearing in simple forms that KnowItAll is able to recognize. The additional
machinery in SRES is necessary when redundancy is low. Specifically, SRES is more effective
in identifying low-frequency instances, due to its more expressive rule representation, and
its classifier that inhibits those rules from overgeneralizing.

In the same graphs we can see that SRES-NER outperforms SRES by 5–15% in recall for
similar precision levels. We can also see that for Person-based predicates the improvement is
much more pronounced, because Person is a much simpler entity to recognize. Since in the
InventorOf predicate the second attribute is of type CommonNP, the NER component adds
no value and SRES-NER and SRES results are identical for this predicate.

4.3 True recall estimate

In this experiment we attempt to estimate the true recall of the system. It is impossible to
manually annotate all of the relation instances because of the huge size of the input corpus.
Thus, indirect methods must be used. We used a large list of known acquisition and merger
instances (that occurred between 1/1/2004 and 31/12/2005) taken from the paid service
subscription SBC Platinum. For each of the instances in this list we identified all sentences in
the input corpus that contained both instance attributes and assumed that all such sentences
are true instances of the corresponding relation. This is of course an overestimate because
in some cases the appearance of both attributes of a true relation instance is just a chance
occurrence and does not constitute a true mention of the relation. Thus, our estimates of the
true recall are pessimistic, and the actual recall is higher.

For all of the known true instances that appeared in the corpus we count the number of
instances that were found by SRES. The fraction of found instances versus all instances gives
our recall estimate. In Fig. 5 we present the results for the Acquisition and Merger relations.
We show the recall values at several levels of redundancy. The redundancy of an instance in

123

Self-supervised relation extraction from the Web

Fig. 5 True recall estimates Acquisition

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Redundancy

Merger

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Redundancy

R
ec

al
l

R
ec

al
l

a corpus is the number of sentences in which both attributes of the instance appear. As can be
seen from the bar charts in the Fig. 5, SRES identifies at least 30% of instances even when
there is no redundancy.

5 Conclusions

We have presented the SRES system for autonomously extracting relations from the Web. We
showed how to improve the precision of the system by classifying the extracted instances using
the properties of the patterns and sentences that generated the instances and how to utilize a
simple NER component. The cross-predicate tests showed a classifier that performs well for
all relations can be built using a small amount of labeled data for any particular relation. We
performed an experimental comparison between SRES, SRES-NER, and the state-of-the-art
KnowItAll system, and showed that SRES can double or even triple the recall achieved by
KnowItAll for relatively rare relation instances, and get an additional 5–15% boost in recall
by utilizing a simple NER. In particular, we have shown that SRES is more effective in

123

B. Rozenfeld, R. Feldman

identifying low-frequency instances, due to its more expressive rule representation, and its
classifier (augmented by NER) that inhibits those rules from overgeneralizing.

Acknowledgments Some of the data sets were provided by the KnowItAll project at the University of
Washington’s Turing Center. We thank Oren Etzioni and Stephen Soderland for helpful discussions.

References

1. Agichtein E, Gravano L (2000) Snowball: extracting relations from large plain-text collections. In:
Proceedings of the 5th ACM international conference on digital libraries (DL)

2. Brin S (1998) Extracting patterns and relations from the World Wide Web. In: WebDB workshop at 6th
international conference on extending database technology, EDBT’98, Valencia

3. Chen J, Ji D et al (2005) Unsupervised feature selection for relation extraction IJCNLP-05, Jeju Island
4. Ciravegna F (2001) Adaptive information extraction from text by rule induction and generalization. In:

Proceedings of the 17th IJCAI, Seattle
5. Cowie J, Lehnert W (1996) Information extraction. Commun Assoc Comput Mach 39(1):80–91
6. Downey D, Etzioni O et al (2004) Learning text patterns for web information extraction and assessment

(extended version). Technical Report UW-CSE-04-05-01
7. Etzioni O, Cafarella M et al (2005) Unsupervised named-entity extraction from the Web: an experimental

study. Artif Intell 165(1):91–134
8. Feldman R, Rozenfeld B et al (2006) TEG—a hybrid approach to information extraction. Knowl Inf Syst

9(1):1–18
9. Freitag D (1998) Machine learning for information extraction in informal domains. Computer Science

Department, Carnegie Mellon University, Pittsburgh p 188
10. Freitag D, McCallum AK (1999) Information extraction with HMMs and shrinkage. In: Proceedings of

the AAAI-99 workshop on machine learning for information extraction
11. Genkin A, Lewis DD et al (2004) Large-scale bayesian logistic regression for text categorization.

DIMACS, New Brunswick pp 1–41
12. Grishman R (1996) The role of syntax in information extraction. In: Advances in Text Processing: Tipster

Program Phase II. Morgan Kaufmann
13. Grishman R (1997) Information extraction: techniques and challenges. SCIE: 10–27
14. Hasegawa T, Sekine S et al (2004) Discovering relations among named entities from large corpora. ACL

2004
15. Kushmerick N, Weld DS et al (1997) Wrapper induction for information extraction. IJCAI 97:729–737
16. Li Z, Ng WK et al (2005) Web data extraction based on structural similarity. Knowl Inf Syst 8(4):438–461
17. Miller G (1990) WordNet: an on-line lexical database. Int J Lexicogr 3(4):235–312
18. Ravichandran D, Hovy E (2002) Learning surface text patterns for a question answering system. 40th

ACL Conference
19. Riloff E (1993) Automatically constructing a dictionary for information extraction tasks. AAAI-93
20. Riloff E, Jones R (1999) Learning dictionaries for information extraction by multi-level boot-strapping.

AAAI-99
21. Soderland S (1999) Learning information extraction rules for semi-structured and free text. Mach Learn

34(1–3):233–272
22. Wong T-L, Lam W (2007) Learning to extract and summarize hot item features from multiple auction

web sites. Knowl Inf Syst

123

Self-supervised relation extraction from the Web

Author Biographies

Ronen Feldman is an Associate Professor of Information Systems at
the Business School of the Hebrew University in Jerusalem. He received
his B.Sc. in Math, Physics and Computer Science from the Hebrew Uni-
versity and his Ph.D. in Computer Science from Cornell University in
New York. He was an Adjunct Professor at NYU Stern Business School.
He is the founder of ClearForest Corporation, a Boston based company
specializing in development of text mining tools and applications. He has
given more than 30 tutorials on text mining and information extraction
and authored numerous papers on these topics. He is the author of the
book “The Text Mining Handbook” published by Cambridge University
Press in 2007.

Benjamin Rozenfeld is a research scientist at Topodia Corporation. He
received his B.Sc. in Mathematics and Computer Science from Bar-Ilan
University. He is the co-inventor of the DIAL information extraction
language.

123

	Self-supervised relation extraction from the Web
	Abstract
	Introduction
	Related work
	Brief description of KnowItAll
	Description of SRES
	Pattern learner
	Preparing the positive and negative sets
	Generating the patterns
	Post-processing, filtering, and scoring
	Scalability issues
	Instance extractor
	Classifying the extractions
	NER filter
	Experimental evaluation
	Cross-predicate classification performance
	Performance of the whole system
	True recall estimate
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

